Location:Home > Model information > TURBOS BORGWARNER KKK › K SERIES > A New Model for Boundary Layer Transition Using a Single

A New Model for Boundary Layer Transition Using a Single

Time:2018-12-01 06:59Turbochargers information Click:

Model Layer Boundary Transitio

Walters,  D. K., and Leylek,  J. H., 2000, “Impact of Film-Cooling Jets on Turbine Aerodynamic Losses,” ASME J. Turbomach., 122, pp. 537–545.

2

Walters, D. K., and Leylek, J. H., 2002, “Computational Study of Film-Cooling Effectiveness on a Low-Speed Airfoil Cascade—Part II: Discussion of Physics,” ASME Paper No. DETC2002/CIE-34422.

3

Savill, A. M., 1993, “Some Recent Progress in the Turbulence Modelling of By-Pass Transition,” in Near-Wall Turbulent Flows, So, R. M. C., Speziale, C. G., and Launder, B. E. (eds.), Elsiver Science, New York, pp. 829–848.

4

Wilcox,  D. C., 1994, “Simulation of Transition with a Two-Equation Turbulence Model,” AIAA J., 32, pp. 247–255.

5

Craft,  T. J., Launder,  B. E., and Suga,  K., 1997, “Prediction of Turbulent Transitional Phenomena with a Nonlinear Eddy-Viscosity Model,” Int. J. Heat Fluid Flow, 18, pp. 15–28.

6

Chen,  W. L., Lien,  F. S., and Leschziner,  M. A., 1998, “Non-Linear Eddy-Viscosity Modelling of Transitional Boundary Layers Pertinent to Turbomachine Aerodynamics,” Int. J. Heat Fluid Flow, 19, pp. 297–306.

7

Chernobrovkin,  A., and Lakshminarayana,  B., 1999, “Turbulence Modeling and Computation of Viscous Transitional Flows for Low Pressure Turbines,” ASME J. Fluids Eng., 121, pp. 824–833.

8

Suzen,  Y. B., and Huang,  P. G., 2000, “Modeling of Flow Transition Using an Intermittency Transport Equation,” ASME J. Fluids Eng., 122, pp. 273–284.

9

Steelant,  J., and Dick,  E., 2001, “Modeling of Laminar-Turbulent Transition for High Freestream Turbulence,” ASME J. Fluids Eng., 123, pp. 22–30.

10

Volino,  R. J., 1998, “A New Model for Free-Stream Turbulence Effects on Boundary Layers,” ASME J. Turbomach., 120, pp. 613–620.

11

Baek,  S. G., Chung,  M. K., and Lim,  H. J., 2001, “k-ε Model for Predicting Transitional Boundary-Layer Flows Under Zero-Pressure Gradient,” AIAA J., 39, pp. 1699–1705.

12

Matsubara,  M., and Alfredsson,  P. H., 2001, “Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence,” J. Fluid Mech., 430, pp. 149–168.

13

Klebanoff, P. S., 1971, “Effects of Free-Stream Turbulence on a Laminar Boundary Layer,” Bull. Am. Phys. Soc., 16 .

14

Jacobs,  R. G., and Durbin,  P. A., 2001, “Simulations of Bypass Transition,” J. Fluid Mech., 428, pp. 185–212.

15

Mayle,  R. E., and Schulz,  A., 1997, “The Path to Predicting Bypass Transition,” ASME J. Turbomach., 119, pp. 405–411.

16

Volino,  R. J., and Simon,  T. W., 1997, “Boundary Layer Transition Under High Free-Stream Turbulence and Strong Acceleration Conditions: Part 2—Turbulent Transport Results,” ASME J. Heat Transfer, 119, pp. 427–432.

17

Leib,  S. J., Wundrow,  D. W., and Goldstein,  M. E., 1999, “Effect of Free-Stream Turbulence and Other Vortical Disturbances on a Laminar Boundary Layer,” J. Fluid Mech., 380, pp. 169–203.

18

Johnson,  M. W., and Ercan,  A. H., 1999, “A Physical Model for Bypass Transition,” Int. J. Heat Fluid Flow, 20, pp. 95–104.

19

Bradshaw,  P., 1994, “Turbulence: The Chief Outstanding Difficulty of Our Subject,” Exp. Fluids, 16, pp. 203–216.

20

Luchini,  P., 2000, “Reynolds-Number-Independent Instability of the Boundary Layer Over a Flat Surface: Optimal Perturbations,” J. Fluid Mech., 404, pp. 289–309.

21

Andersson,  P., Berggren,  M., and Henningson,  D. S., 1999, “Optimal Disturbances and Bypass Transition in Boundary Layers,” Phys. Fluids, 11, pp. 134–150.

22

Schlichting, H., 1968, Boundary Layer Theory, 6th Edition, McGraw Hill, New York, 1968.

23

Durbin,  P. A., 1996, “On the k-ε Stagnation Point Anomaly,” Int. J. Heat Fluid Flow, 17, pp. 89–90.

24

Moore, J. G., and Moore, J., 1999, “Realizability in Turbulence Modeling for Turbomachinery CFD,” ASME Paper No. 99-GT-24.

25

Shih,  T.-H., Liou,  W. W., Shabbir,  A., Yang,  Z., and Zhu,  J., 1995, “A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows,” Comput. Fluids, 24, pp. 227–238.

26

Kim,  J., Moin,  P., and Moser,  R. D., 1987, “Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,” J. Fluid Mech., 177, pp. 133–186.

27

Blair,  M. F., 1983, “Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development, Part I—Experimental Data,” ASME J. Heat Transfer, 105, pp. 33–40.

28

Wolfstein,  M., 1969, “The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient,” Int. J. Heat Mass Transfer, 12, pp. 301–318.

29

Radomsky,  R. W., and Thole,  K. A., 2000, “Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage,” ASME J. Turbomach., 122, pp. 255–262.

30

Radomsky, R. W., and Thole, K. A., 2001, “Detailed Boundary-Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels,” ASME Paper No. 2001-GT-0169.

31

Thole, K. A., 2002, personal communications.

Copyright infringement? Click Here!